![现代机械设计手册·第1卷(第二版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/772/29974772/b_29974772.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
4.3 代数
4.3.1 二项式公式、多项式公式和因式分解
表1-4-3 二项式公式、多项式公式和因式分解
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image002815.jpg?sign=1738986261-CPuoZVtlU3hGBtGozdqLFbUA5N688ptG-0-cf6a4ca5f339d0c38b3630333e54c5b9)
4.3.2 指数和根式
表1-4-4 指数和根式
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image002821.jpg?sign=1738986261-Pb85hpoV4TRK7pZsgt9VRkxz27dzLPb8-0-0d18e07d4bbadf66bca89a96ff855088)
4.3.3 对数
表1-4-5 对数
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image002827.jpg?sign=1738986261-ZQd3uUPhcp86wWWsTsZQRCiu9ILyYleO-0-473734f2b6ec8b0aab39072eab4e483b)
4.3.4 不等式
表1-4-6 不等式
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image002833.jpg?sign=1738986261-gb1ZIt6BzttOqFQFnQUKqijKo2nl3x5p-0-381e8529e37d0ed643d703187e82558c)
4.3.5 代数方程
表1-4-7 代数方程
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image002839.jpg?sign=1738986261-Nb1RBp6AGSGV6O7dXYJMlXvrCrim9Oe1-0-26c629ad288c59cad2f7a2c8d31ec012)
4.3.6 级数
表1-4-8 级数
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image002845.jpg?sign=1738986261-8l5t7ZJMBpx65ZuwRSPQfbxY2twawPwG-0-c88f1f2c0561468f3b1704a3ecdbae31)
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image002851.jpg?sign=1738986261-isWn81oHA0pFlgPVlAtnfWQ3IszW53HQ-0-2b2e87b8c296da065a65e1e4dfcdf0ae)
4.3.7 傅里叶级数
表1-4-9 傅里叶级数
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image002857.jpg?sign=1738986261-859weR9br5GwkKq8brtFHkQftorlgkIC-0-33f273927f84ff2d99d9e9d9e348af4b)
4.3.8 行列式
表1-4-10 行列式
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image002863.jpg?sign=1738986261-dStC1PC7Z8fMHh0WB68DpF6k4mZRerqd-0-e663cde97c5e555180429a543686bb68)
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image002869.jpg?sign=1738986261-HAQSiEHbqyKUb9hMslilnnQl0pH3mlnJ-0-b4b8444102cb99eac6d5326586508d1c)
4.3.9 矩阵
表1-4-11 矩阵的概念
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000006.jpg?sign=1738986261-RGgbpDIJoYX1vkA1PE8xndpqne0ZkPrd-0-aae88aea0dd80da96d6a57bbfcb4fd12)
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000012.jpg?sign=1738986261-I5XzWk2tadQw5tHTVs8tc1vz37kmyCZv-0-15dee7684aaff2b63b8c42c4bf9a7ac2)
表1-4-12 矩阵运算及其性质
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000018.jpg?sign=1738986261-JTq7oXDK9M294v56BKMD1PCsKFMEZ5yG-0-ce440a9f26a2bf0b5bfa484f46446d48)
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000024.jpg?sign=1738986261-6YmMf7ZJ9HQm7s8Oi5RZhgt6aCQOrRjs-0-4f5923c70502cfdefb825cc912c0d18d)
表1-4-13 矩阵运算性质与数的运算性质比较
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000030.jpg?sign=1738986261-LkexI3moHsOB8lPd8CWyKte6iHdL8iT0-0-15f263427debd7762a3c3aa32d58294e)
表1-4-14 分块矩阵及其运算
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000036.jpg?sign=1738986261-PUWbtXGmyy3oVDhvoGYaANzHewXWyrNr-0-5f343a23c788e8b68a102e4f65c81216)
表1-4-15 方阵的行列式和代数余子式
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000042.jpg?sign=1738986261-7b98bGfZZ4ZzzukjQXx05Ka8E4q6EPZN-0-9af0325452e543f8fc823e50150ca80a)
表1-4-16 非奇异矩阵、正交矩阵、伴随矩阵
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000048.jpg?sign=1738986261-3fldP7V1syf5DPVRX3pNhxLqJYNAkmIv-0-3d6d3b5bc28e3ff476853bff1e53705d)
表1-4-17 矩阵的初等变换
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000054.jpg?sign=1738986261-McTH3GijbIoVhilUHwuxi2Cc4s24uabP-0-0b600c765e207c48af29a306b2a00d73)
表1-4-18 初等矩阵及其与初等变换的关系
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000060.jpg?sign=1738986261-g3dSEXj4JNZGUiCcaxMQfzuM3zGY34to-0-c2f8efbfc7db29d2b61191a59e8fd7dd)
注: 若矩阵B可由矩阵A经过有限次初等变换得到,则称矩阵B与A等价。
表1-4-19 矩阵的秩
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000072.jpg?sign=1738986261-Qa8oUlNR0A7YRLENC2PyfR4zGBLq8KIq-0-d7d9b9872ff5ee93c7a4e158b9889f02)
表1-4-20 逆矩阵的计算
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000078.jpg?sign=1738986261-U3wVDu44eChL6M9ObMQvkRRrbKOi0p6d-0-8d8e0cb3b276387ef09191c8eb4bf148)
4.3.10 线性方程组
含有n个未知量,m个一次方程的方程组
称为n元线性方程组,其中aij(i=1,2,…,m;j=1,2,…,n)称系数bi(i=1,2,…,m)称常数项。
表1-4-21 线性方程组
![](https://epubservercos.yuewen.com/F3E36B/16499763104627206/epubprivate/OEBPS/Images/image000090.jpg?sign=1738986261-BnvpYgvAhPapupbDGLt9r8tzZUoKKpEJ-0-59988c0b5ffacffa7d1b6a3ed44f4d6d)