2.2 数据安全管控(DSC)框架
Forrester提出的数据安全管控(Data Security Control,简称DSC)框架把安全管控数据分解成三大领域:定义数据、分解和分析数据、防御风险和保护数据(图2-5)。
图2-5 数据安全控制的三大领域
1.定义好数据可以简化数据管控
我们不太可能完完全全地把数据保护起来,比如把所有的数据都加密从运维的角度来说太复杂了,而且效率比较低。为了更好地了解所要保护的数据,进行数据发现和数据分类非常关键。
①数据发现。
为了保护数据,我们必须首先知道数据都存储在哪里。
②数据分类。
数据分类是数据保护的基石,首先需要制定相应的标准。当然,数据分类的标准会随着业务和数据的变化而有所变化。
2.分解和分析数据帮助更好地制定安全策略
剖析数据的商业价值及其在业务中的重要性,然后决定相应的安全策略和技术。比如对于经常与外部交换的敏感数据,安全团队可以部署能够实现安全协作的方案;对于内部业务部门希望用于数据分析的敏感数据,可以对使用中的数据进行保护或进行匿名去标识化处理。同时,了解数据的状态很重要:数据是如何流动的?谁在使用这些数据?使用频率如何?使用的目的是什么?这些数据是如何收集的?如果数据完整性受到破坏,会产生什么样的后果?
3.防御风险和保护数据免受威胁
随着数据风险的加大,以及攻击的数量和复杂程度的增加,DSC框架建议了四种方法。
①控制访问。
确保正确的用户能够在正确的时间访问正确的数据。要在整个生命周期中保护数据,并严格限制可以访问重要数据的人数,持续监控用户的访问行为。
②监控数据使用行为。
帮助安全团队预先提示潜在的滥用行为。可以通过部署用户实体行为分析(User and Entity Behavior Analytics,简称UEBA)等工具,并将其与安全分析集成,来实现主动保护敏感数据所需的可见性。
③删除不再需要的数据。
通过适当的数据发现和分类,可以防御性地处置不再需要的敏感数据。安全、防御性地处理数据是一种强大的防御策略,可以降低法律风险,降低存储成本,并降低数据泄露的风险。
④混淆数据。
不法分子利用互联网上的“地下黑市”买卖敏感数据。我们可以通过使用数据抽象和模糊技术(如加密、去标识化和掩蔽)生成“混淆数据”,来降低数据的价值。