![医用高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/549/31729549/b_31729549.jpg)
2.2 导数的运算
根据导数的定义,求函数y=f(x)的导数f′(x)可分为三步:
(1)求增量Δy=f(x+Δx)-f(x).
(2)算比值Δy与自变量的增量Δx的比:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00032006.jpg?sign=1739299458-eG3y3lQJYtHnyMuG0ThT0UA9Hs5D6z3X-0-103faf56baa425c77b2beab968e1a598)
这个比值称为函数的平均变化率,又称差商.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00032007.jpg?sign=1739299458-vns8HOFZJsiA7r41qiLKNhqTpTFK9qX0-0-2a4b1cfd2352383959587c91edce8ba5)
若此极限存在,则此极限值就是函数f(x)的导数f′(x).
下面我们根据导数的定义,求几个基本初等函数的导数.
2.2.1 一些基本初等函数的导数
1.常量的导数
设函数y=c,因对任何x,有y≡c,显然Δy=0,所以,即
(c)′=0
2.幂函数的导数
设函数y=xn(n为正整数),给x以增量Δx,由二项式展开定理有:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033001.jpg?sign=1739299458-XhRw2MKr9b9E3P4cRG3tJn2hj6BQcixV-0-b347aee8766bb1bbb77a5f41ba4f6ba0)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033002.jpg?sign=1739299458-zJhcuGB0u1NbA6w2kBEfo63GkuKmho6R-0-944f09380cc86ea9d88a52bfc4b1c3ee)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033011.jpg?sign=1739299458-1oFJ4eYTLkehMDx4LOQnNk1fyf9CZbjG-0-8156aca303c0d481488a9dc80a8f3bb4)
即 (xn)′=nxn-1
当n=1时,上式为 x′=1
即自变量对其自身的导数等于1.
更一般地,对于幂函数y=xa(a为任意实数),有
(xa)′=axa-1
这就是幂函数的导数公式,此公式的证明将在后面讨论.
3.对数函数的导数
设函数y=logax(a>0且a≠1).
给自变量x以增量Δx,则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033003.jpg?sign=1739299458-dUYCOG6lTBb087InhWTySvV893y9l6ai-0-0ce09e4ead551ed99194d82f3246b508)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033004.jpg?sign=1739299458-h89Z1WtXluLHHoLk3aEembBRXBtkRa8Z-0-669abe58e2fb654d0f197cdd037f80c6)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033005.jpg?sign=1739299458-jTDx7hj8hz8qiEDoZVtZBW94o3gFuVKK-0-374821721315951b484760cac9480d51)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033006.jpg?sign=1739299458-PPtY4fq5Nroc3dGopjgPrAlFqpX7Q9CG-0-1e178d2dc7c50167b38f6aed7d8077b0)
特别对于a=e,则有
4.正弦函数和余弦函数的导数
设函数y=sin x,给自变量x以增量Δx,则Δy=sin(x+Δx)-sin x,由三角函数的和差化积公式,有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033008.jpg?sign=1739299458-RBXakYdpTSWl3bxRC2xHthBnLQHoYhpr-0-24f7020040517ba7156c3d149b59fbcf)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033009.jpg?sign=1739299458-VRW9ugaVuwgMZB2NMQDZEDELFlSkP6yn-0-22adac46cea1220b68304c6427713206)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033010.jpg?sign=1739299458-BEJYU81Jq1N7imFKWGeW09Tnxk4DE4Rh-0-3b1cbb6b9b84ae1e230e30e308dcbd9a)
即 (sin x)′=cos x
同理可证 (cos x)′=-sin x
2.2.2 函数四则运算的求导法则
设函数u=u(x),v=v(x)在x点处可导,即u′=u′(x)及v′=v′(x).
法则1 两个函数的代数和的导数
(u±v)′=u′±v′
证明 设y=u±v.给自变量x以增量Δx,函数y,u,v的增量依次为Δy,Δu,Δv有
Δu=u(x+Δx)-u(x)Δv=v(x+Δx)-v(x)
Δy=[u(x+Δx)±v(x+Δx)]-[u(x)±v(x)]
=[u(x+Δx)-u(x)]±[v(x+Δx)-v(x)]=Δu±Δv
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034002.jpg?sign=1739299458-4aHGxUsYvxZHtsStGSquOLX1uATdelBA-0-cc0b4fd0f32f376e8ccfbee830658fc1)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034003.jpg?sign=1739299458-8BeG9Ic4Io5vcJjNq0rZRtXB9DXBrNvd-0-1aca3b3fdd23392fac88f1b27a6f1715)
即 (u±v)′=u′±v′
此法则可推广到有限个函数代数和的导数情形,例如(u+v-w)′=u′+v′-w′.
例1 已知函数,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034005.jpg?sign=1739299458-LkzKWnUZxYZsswJZChasvU7aoEPdvog8-0-69ebf43c12df39157b3ec2c357f24f87)
法则2 两个函数乘积的导数
(u·v)′=u′v+uv′
证明 设函数y=uv,类同法则1有
Δy=u(x+Δx)v(x+Δx)-u(x)v(x)
=u(x+Δx)v(x+Δx)-u(x+Δx)v(x)+u(x+Δx)v(x)-u(x)v(x)
=u(x+Δx)[v(x+Δx)-v(x)]+v(x)[u(x+Δx)-u(x)]
=u(x+Δx)Δv+v(x)Δu
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034006.jpg?sign=1739299458-QtqhhJ2Cz6BcGWGgU4sAm8RqlrCybXh4-0-74250a1901656bd2406a5fe56acb859a)
已知函数u(x),v(x)在x点处可导,则u(x)在x点处连续,故有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034007.jpg?sign=1739299458-nlPlXcpT2ALCaMNVJG1zA4OPiiRGiFoP-0-551d27a85fa9600e2238e1e3dd5be115)
即 (uv)′=u′v+uv′
推论1 (cu)′=cu′
推论2 (uvw)′=u′vw+uv′w+uvw′
乘积的法则也可推广到任意有限个函数之积的情形.
例2 已知y=ln x(sin x+cos x),求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034008.jpg?sign=1739299458-NQH6hQbcAxsJFfcnsFyqL5Vs5Ul43TVh-0-94d58c6cefebf3fcf7b2fe7c122fe8fe)
法则3 两个函数商的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035001.jpg?sign=1739299458-nfgmIYbL88ROxBXoGQdSPQ4ktbUC63Zx-0-fc030239e93d42a6a1e3a156731aa2a5)
推论3
例3 已知函数y=tan x,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035003.jpg?sign=1739299458-A9OvYm38dGcfbi6EqGxbRzRqHlkpCiWx-0-7399e42fca8e4dec0217089f449b8c48)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035004.jpg?sign=1739299458-VgGuhbkRp1Knlw0Rt6HmOqQHrJho23zJ-0-c5c73239ce5fa7a9575c59949e667ff1)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035013.jpg?sign=1739299458-ulbUCJD2sXkxT7t9807UccbTBbS6HCM8-0-f35dfb5eb1a49a85bafa10757f948057)
例4 已知函数y=sec x,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035014.jpg?sign=1739299458-IFwfhFg78FqAMX0K4J9hmyABCuE8RAxe-0-48cdf109af4e55e12df840f4bce8ea12)
即 (sec x)′=tan x·sec x
同理可求 (cscx)′=-cotx·cscx
2.2.3 复合函数的求导法则
法则4 (链式法则)设函数u=φ(x)在x点处可导,而函数y=f(u)在x点的对应点u(u=φ(x))处可导,则复合函数y=f(φ(x))在x点处可导,且其导数为
f′(φ(x))=f′(u)φ′(x) (2.2)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035005.jpg?sign=1739299458-1WdjNAU1IcjHT3zdoR4iwjINDf5PcxCZ-0-ff9b583ae30cb9518539f6ec5a1f25c3)
证明 设x有增量Δx,则相应的函数u有增量Δu,函数y有增量Δy,因为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035006.jpg?sign=1739299458-Do8utEqNRD0I4bJJe50p3rRrAeOPWLmn-0-088d640555740f718e37cb305e28804d)
由于u=φ(x)在x点可导,当然在x点连续,故当Δx→0时,有Δu→0.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035007.jpg?sign=1739299458-uLGhWUrLTBhSCQC5QgcnM5cnHdGKigPi-0-56049acc7db62739886e158b7ff0f9d1)
此法则可以推广到多个中间变量的情形.我们以两个中间变量为例,设y=f(u),u=φ(v),v=ψ(x).则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035008.jpg?sign=1739299458-Y2LdX4D9yT8g9mQeL0XayzWaKIPuxkQG-0-b995af5b305d4e84c2b3b4ac1792ca97)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035009.jpg?sign=1739299458-9iYcC9fmbkcndD1xOUxNxkPC6tbHP3Jq-0-957e25db298029bbcfd598e55cf0b188)
故复合函数y=f(φ(ψ(x)))的导数为
例5 已知函数y=sinln x2,求y′.
解 令y=sinu,u=lnv,v=x2,则有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035011.jpg?sign=1739299458-W07xgkZDl4aI7z6qJs0QiZ7SlDSs0oBK-0-461aca1389b658c01420c0346c23f4c2)
例6 已知函数y=sin8x,求y′.
解 令y=sinu,u=8x,则,
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036002.jpg?sign=1739299458-1d3cj1LQSEUvHt3m01h3SC2wi6yGv5vv-0-c0a57dd101d06436d151f81cdf511f16)
对复合函数的分解比较熟练后,就不必再写出中间变量。
例7 已知函数,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036004.jpg?sign=1739299458-vBiHofetRoe3UaA0TH5i3gmYeA0YUuJp-0-ea940635d718c67e8f3995fcfd54b3c1)
2.2.4 反函数的求导法则
为了讨论指数函数(对数函数的反函数)与反三角函数(三角函数的反函数)的导数,下面先研究反函数(inverse function)的求导法则.
法则5 如果函数y=f(x)在某区间Ix内单调、可导,且导数不等于零,则它的反函数x=φ(y)在对应区间Iy={y|y=f(x),x∈Ix}上可导,且
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036005.jpg?sign=1739299458-fykF01Amf1rajLctkv7V0h5iRToLxUmO-0-445e8554d6da746cb960d8f955e20bfc)
此定理说明:一个函数的反函数的导数等于这个函数的导数的倒数.
证明 设函数y=f(x)的反函数x=φ(y)在y点有增量Δy,且Δy≠0,有
Δx=φ(y+Δy)-φ(y);Δy=f(x+Δx)-f(x)
当Δy→0时,有Δx→0;当Δy≠0时,有Δx≠0,则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036006.jpg?sign=1739299458-tOu2NAmEaFn0TEEQMch5LdmAUEfZ8WJN-0-81562ccc69493e1c26333e7706d9a873)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036007.jpg?sign=1739299458-MR565D9rlCbzm6MRYCCp8skxrN9YqHFh-0-f3834c39502d538742ddb52c7c86f8fd)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036008.jpg?sign=1739299458-YUJWnWfO5vc26ErxmuNOae406oc5GHEJ-0-af76c86b2f44b2034fa2e18c5c4f4c20)
例8 求指数函数y=ax(a>0,a≠1)的导数.
解 已知y=ax是x=logay的反函数,由
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036010.jpg?sign=1739299458-QUwK7hb9lpApNZYslVORcJHJEROHRcfR-0-eb385497c976410f68f87f8c8f562a8a)
即 (ax)′=axlna
特别地,当a=e时,有
(ex)′=ex
例9 求反三角函数的导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036011.jpg?sign=1739299458-nroEXqOexz3WdsauwzvI5932hhm0YlXu-0-7a4983698981ccb034ad7f1942031f3b)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036012.jpg?sign=1739299458-y2ArjcVpecLg1H42fHirje4qrxsQWA19-0-ca67e249d5bfa666ddcf479180abadb9)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037001.jpg?sign=1739299458-BYoucnngn3QTXxNMty1LJOCJnQKgbes2-0-7cce72386ae3801597990233b63641a2)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037002.jpg?sign=1739299458-jLfQ451xENOZrZ7DfjBBYf2lO515rO9c-0-429cdd74a71527de0d93daac9182f0a3)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037007.jpg?sign=1739299458-lRHKPS1bzEK4dnrkQWUOVtMd55O5x2NP-0-130be79129dfec9683abf3186990d77d)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037008.jpg?sign=1739299458-euP94q3cDOJ8WbUcTgrSQMKMVfO3wcAu-0-64ce66dfda92cb63f2bcd3ffb19b0504)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037009.jpg?sign=1739299458-QZrfoCqmAq71uJkXBDtxe0YX9zMVjI6D-0-6000fe65a20a0b14a8d39fcb4a8d9d21)
用类似方法可得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037010.jpg?sign=1739299458-xJ9SLCegbvUmhduhXST5fHs2UNY6Ewct-0-d17b4d1371145e0f1856d7384d4dab1b)
例10 求幂函数y=xα(α为实数,x>0)的导数.
解 由于y=eαln x,故
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037011.jpg?sign=1739299458-VxSGuTSrKkoPoyRfHJbwX4A5Qr38rXQR-0-fe3fe1e9cc14585a58943cc11298b6d4)
即 (xα)′=αxα-1
2.2.5 隐函数的求导法则
前面,我们讨论的求导运算都是针对函数y能明确写成自变量x的解析式y=f(x),这样的函数,我们称为显函数(explicit function).但有时遇到两个自变量x,y间的函数关系是由方程F(x,y)=0所确定的,这样的函数,称为隐函数(imlicit function).
例如,x2+y2=1和exy-xy=0都确定了x和y之间的某种函数关系.
求隐函数的导数并不需要将y从方程F(x,y)=0中解出来,亦不需要引进新的法则,只要对方程F(x,y)=0的两边分别对x求导,便得到所求函数的导数.求导时注意y是x的函数,利用复合函数求导法则,便能得到所求函数的导数.
例11 求由方程y3+3y-x-2x5=0所确定的函数y对x的导数.
解 方程两边对x求导
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037004.jpg?sign=1739299458-D3cO0pEKc6Nb5uxJYCiGjDA5VNkvPVRu-0-c68d385234cb24260911a4f740c5b554)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037005.jpg?sign=1739299458-P17hLRu54OU5x5PizIGIJ44VgAbfjmdu-0-e3280a9dec3f057dcd77e71629c1e655)
例12 求由方程ey=x2y+ex所确定的隐函数y的导数y′和y′|x=0.
解 方程两边同时对x求导,得
ey·y′=2xy+x2y′+ex
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037006.jpg?sign=1739299458-PXMxZxwOWhwSfumB3eJnqnSWAz4a0k6j-0-abddeda8d4d8632c6b77764de7686908)
当x=0时,由ey=x2y+ex得y=0,代入上式得y′|x=0=1.
2.2.6 对数求导法
将函数的表达式两边取自然对数,并利用对数性质将表达式化简,然后应用复合函数的求导法则,将等式两边对自变量求导,最后得出函数的导数,这种方法叫做对数求导法.下面通过两个例子说明这种方法.
例13 已知函数,求y′.
解 将等式两边取对数,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038002.jpg?sign=1739299458-koXRZA7xSpcmAyYfReWfLXCQLIpI6inB-0-b18f989012aefd4ce5015f0cdf167acc)
对x求导,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038003.jpg?sign=1739299458-N8WlfIOHkgc66NdiS0OQnsmbs8SWz2Pu-0-210d8651a1a294be95294a90c43e4a8d)
例14 已知函数y=xsin x,求y′.
解 两边取对数,化为隐式,得
ln y=sin x·ln x
两边对x求导,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038004.jpg?sign=1739299458-ocJdZq7IcA7iWkcP4fjH1gs3jFYPlMDH-0-de616372c981495ba35072d6f5d59e8d)
*2.2.7 由参数方程所确定的函数导数
当函数由参数方程
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038005.jpg?sign=1739299458-Nn3anAJEaFKFWzyNYEcqiM7IvtNtlfgg-0-f7c00320a99b2ca45c2f4ac74d6ee8b0)
确定时,在不消去参数t的情况下,可以方便地求出y对x的导数 ,过程如下:分别求出y对t的导数
,及x对t的导数
,即得y对x的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038009.jpg?sign=1739299458-WLPudDDNHXndHJqYJOMhY5sYR6UC8pFu-0-725def5547a2d1bb623b6a9be43990f8)
例15 求由参数方程所确定的函数的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038012.jpg?sign=1739299458-qETPvku6eMQz1qBGJCUWpzayHMYfMkoo-0-4fe0b39d5994b3a57ec4f4e3a630c9bc)
故
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038014.jpg?sign=1739299458-LbViQGKrCQIdTDleqwVSvuk2KDkk9Xrh-0-119e3dfa620fcf7839c89ff6d1084fdd)
为了便于查阅,我们列出基本初等函数的导数公式
1.(c)′=0(c为常数). 2.(xα)′=αxα-1(α为实数).
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038013.jpg?sign=1739299458-ZF8aPtmlOLzPpcgLVdtwycph6F7okZFz-0-592af5d5588520ce501ff4d750c9b7a0)
5.(ax)′=axlna. 6.(ex)′=ex.
7.(sin x)′=cos x. 8.(cos x)′=-sin x.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039001.jpg?sign=1739299458-mNxtzlK61uekhXWbLpGNacBoPV9yGHiw-0-5a7a53f717508d57f7e9950e69b5ab9f)
11.(sec x)′=tan x·sec x. 12.(cscx)′=-cotx·cscx.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039008.jpg?sign=1739299458-PbdcOdRvUput8bBQrJCiOUN1DrIzrAxz-0-62d5ad21f6c76f2a79a52450c1117027)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039009.jpg?sign=1739299458-uZ1vbHj7O7VXcl4iZorM3PWRQsVH8maC-0-50165b0d4d0b9c377073d517f9e513ed)
2.2.8 高阶导数
函数y=f(x)的导数f′(x)仍然是x的函数,我们可以继续讨论f′(x)的导数.如果f′(x)仍然可导,它的导数就称为函数y=f(x)的二阶导数(second derivative),记为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039002.jpg?sign=1739299458-iYwYYAJVanMy2iPQafscKXoFPepeN7V3-0-628b5547ca888d569c26fdeb6a947941)
依此类推,如果函数y=f(x)的n-1阶导数的导数存在,它的导数就叫作函数y=f(x)的n阶导数(n-th derivative),记为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039003.jpg?sign=1739299458-ZrtlRq988cufJeYQt3P79qqpAoeSci7x-0-6c6addf7d6a3fbaea954f4c4191b5b9e)
函数y=f(x)在x点具有n阶导数,则f(x)在x点的某一邻域内必定具有一切低于n阶的导数.
二阶以及二阶以上的导数,统称为高阶导数(higher derivative).
如物体的运动规律(函数)是s=s(t),则s(t)的导数是物体t时刻的瞬时速度v(t),即v(t)=s′(t).加速度等于速度v(t)在t时刻的导数,即加速度为s(t)的二阶导数α=s″(t).这就是二阶导数的物理意义.
显然,求一函数的n阶导数,只需对函数进行n次求导.因此,求高阶导数无需新的方法.
例16 求的二阶导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039005.jpg?sign=1739299458-HfLrAh5OlPwo99g9eYwUnEBfJiAzMOd4-0-89baa2ea87d1d4bfa83b856a11242bda)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039006.jpg?sign=1739299458-D34YpFsgODvPwG3lJZJEMUowPQp73xcJ-0-b6f65b55de0d7c541865b59b5662df63)
例17 求y=ax的n阶导数.
解 y′=axlna
y″=ax(lna)2
…
y(n)=ax(lna)n
即 (ax)(n)=ax(lna)n
显然 (ex)(n)=ex
例18 求y=sin x的n阶导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039007.jpg?sign=1739299458-J8XWmppxKE91MAi33eLwz1eFptecX2QB-0-012ceab6ef69e02836aefc5cb20f358d)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040001.jpg?sign=1739299458-AWJ4m2M8e473l4T43eOcsJuDDVTlsWO0-0-ce5f231da8f107073544bc3c83d326e4)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040004.jpg?sign=1739299458-fsfAibMVedTpfBy5etOChTYlBnhKdnJH-0-c26944cab064c8bc528c3a87f07104dc)
同理可得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040005.jpg?sign=1739299458-d5F0Ms4mLILKd7vTn2mEqX8Jxb1JsvFA-0-c8ab1e4ec7f0782ebbf318849f70b71a)