![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.5 依克莱姆法则解线性方程组
含有n个未知量的n个方程的线性方程组取如下形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8249.jpg?sign=1738885155-JnzdcnwQ0SyStrspkwQIyVK0yblVjJU8-0-5775e915a3fdf4a3ab477b69edf9413b)
当常数项b1,b2,…,bn不全为零时,式(2-3)称为非齐次线性方程组。
如果记
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8250.jpg?sign=1738885155-pciOoPmgZMlWkxwNYq4YY1hPGL43lh7N-0-efe1e6526269e39c777c0e78f1792b84)
式中,T表示转置,那么线性方程组(2-3)可写成矩阵形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8252.jpg?sign=1738885155-jFYPbkVWAxmhshiKOIUmaxtcEXMO8Vp6-0-dedac2e6b9c1a50a092e7220600be10e)
此方程组有两种解法:逆矩阵法和克莱姆法则。
1. 逆矩阵法
当|A|≠0,即A的行列式不为0时,线性方程组(2-4)的解为
x=A-1b
式中,A-1是系数矩阵A的逆矩阵,x称为方程组(2-4)的解向量。
2. 克莱姆法则
若|A|≠0,线性方程组(2-3)的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8270.jpg?sign=1738885155-Vs6Bm6tCxBzATDoa3jJ1LJ7NJaORxgg8-0-7d9d329402e6fb7bf5f9c20ed65cfd98)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8272.jpg?sign=1738885155-lIhapd1Iw50ZwIIm7vL7yAskH40L0J9a-0-17c0283755c591cb534af324aea78c18)
这里Δj(j=1,2,…,n)是以常数项向量b替换A中第j列向量后得到的n阶行列式。
特别地,二阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8274.jpg?sign=1738885155-seufMSHNKN2LTNlapBYDPeV5oTyu6XQi-0-14898840940ab164d1d0bc8ce4e74dc4)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8275.jpg?sign=1738885155-vlUOqdF6hL44KJa9H5FN5eaKoG0HPc9f-0-54bddae54de643f317fe605e26ebe97b)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8276.jpg?sign=1738885155-nH4usKjryvUT5eEalqyViCmCfFEyhgLN-0-456a3942ca347b39747a0ccbe718ab09)
三阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_1430.jpg?sign=1738885155-AePai5mGVtjxawPqFy21ANTqN69FaEMh-0-9d3cc02727f750e2951566bb897abf7a)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8277.jpg?sign=1738885155-qTipgjqL6sPIK8XFE5KMRs8oZKncoahv-0-0addff1925b1c2312589dbed1c63b401)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8278.jpg?sign=1738885155-uw4u6jruVvMQMFHY4qPZqAHFjgEoRdlf-0-1ae1c087a7cd9680151e180f57d27a39)
【手工计算例12】 解以下三元一次线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8282.jpg?sign=1738885155-M648mC3uPvx6a0Krn9yXmMjDxSK3xLSt-0-7b88da11714d6b553b541e706ae680e9)
解:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8285.jpg?sign=1738885155-Pn9pJyAj7oljGhYW3Mxh3WqJa3Kqo1AZ-0-5ad38485bfd37cd4218663d4defb5344)
所以
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8286.jpg?sign=1738885155-77Ipu1w1hU08ZXQnrRtj62Cuwpwr3eie-0-c0dce84710ede22776b416598af2af70)
故,原方程组的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_1566.jpg?sign=1738885155-FjY1mM44AJSZojBYK3lUEyJC4XqWrgmV-0-4dde41aa3eb295c86e9738170e079b6f)