![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.1 四则运算法则
定理1 设函数u=u(x)及v=v(x)均在点x处可导,那么它们的和、差、积、商(除分母为零的点外)也均在点x处可导,且
(1)(u±v)'=u'±v';
(2)(uv)'=u'v+uv';
(3).
定理中(1),(2)可以推广到有限个函数的情形.
推论1[cu(x)]'=cu'(x)(c为常数);
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00058005.jpg?sign=1738952283-kP0OUHyBdOfyV3ofFYcZKVnlnXee0vY8-0-c30737be8f4fc3a2e80349faeb694ae8)
例1 已知函数3-3x2+,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00058007.jpg?sign=1738952283-aXIqHfhypCtxgdi644aepfTfhNZMZCCc-0-8ef4a48e94739e52315e223da816fee6)
例2 已知函数,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059001.jpg?sign=1738952283-qfG0GwYpfWWlkTfb8CydX8g4u42q5kip-0-3a73aec4c760e001ce900da5cf61baed)
例3 已知函数f(x)=xcosxlnx,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059002.jpg?sign=1738952283-AVBB9nCx8JQcNm2kZlc01dWZV9ZzFcDR-0-d8eff4c55f5f08005d48860396576d4b)
例4 已知函数x,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059004.jpg?sign=1738952283-QcZWqrixKIYuAZVUdWpaAmnVXM0OauSd-0-7672b48df88808fd83af8515d6a14942)
发现:因为 ,ln2都是常数,所以
,(ln2)'=0.
例5 证明(tanx)'=sec2x.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059007.jpg?sign=1738952283-6vrMuI7iE9bTGy95w6r1Oi99BLUal8JE-0-5882fe71e09da4b81c8f23ce9803385b)
所以
(tanx)'=sec2x.
同理可证明
(cotx)'=-csc2x,(secx)'=secxtanx,(cscx)'=-cscxcotx.