![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
1.4.1 第一重要极限
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034001.jpg?sign=1738952284-uLfpu4Rx0VjHnWi2VeXfsgasgUwCwjvq-0-1394c8263430cdd57f0cb13ddc206434)
为了更好地理解第一重要极限,先给出如下夹逼定理.
定理(夹逼定理) 如果,
,且
G(x)≤f(x)≤F(x),
则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034004.jpg?sign=1738952284-Tka1R1pcyLHqgXsgYW1deqdujpZVmCi5-0-c5e3f12e46ff190612d6033d9d3aedfc)
从直观上可以看出,该定理是很明显的.当x→x0时,f(x)的左、右函数G(x)和F(x)的极限都同时无限趋近于常数A,则会“逼迫”中间函数f(x)也无限趋近于常数A.
下面根据该定理证明第一重要极限.
作单位圆,如图1-22所示,取圆心角∠AOB=x,令x→0+,不妨假设2.由图可看出,S△AOB<S扇AOB<S△AOD,即
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034006.jpg?sign=1738952284-3m9JPxcA35BTIymTUKsYuuVAQFV45Nay-0-03743102ce08ab7838c1b2eb3555006a)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034007.jpg?sign=1738952284-M0AWFbPxKPWGq4gYb2VFFCIrj4OF2EEY-0-ae5f9eb03a8ef3b32dcf2b9a7812137c)
图 1-22
从而有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034008.jpg?sign=1738952284-nQ4tXFzCwq95buTHG7535lS2l0nh0ixr-0-5a8c0bb672573d4cbedb2b1e1774d1ea)
取倒数
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034009.jpg?sign=1738952284-KA6FsGY0nE6qmU01cF1XbpgigCz9sYnT-0-9e8309cdfd74ce8ee625c64d4076e17b)
因为,根据本节定理,证得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034011.jpg?sign=1738952284-iHKdmKTZSuwKMEa5W0SDemyv8G0b9aZb-0-af9ba11820f3b8cb99ddefffbb52a59d)
又因为cosx和x均是偶函数,所以当x→0-,即对于
,结论仍成立,
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034014.jpg?sign=1738952284-tqh9m3fR0REayPHpg5M1YHmt1zhlVnrr-0-c651be35a8e123d8037eb22c623ea994)
由§1.2节定理2,有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034015.jpg?sign=1738952284-N2RrOLAjmq0DAjCgpx3Yg7G0yrvaeksf-0-ed2c5ead9dddd8518afd558983d5b1f9)
第一重要极限公式(1-1)在极限运算中有重要的作用,要较好地掌握它,必须认清它的特点.
发现:(1)极限是 型,且含有正弦函数;
(2)极限为类型 或x→∞时,□→0,其本质为:
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035003.jpg?sign=1738952284-WoEWcE9OCMDGKxVdsjxYT1EVwOHgBr6t-0-15fecc4b2703a0754682ffeab7800bde)
例1 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035005.jpg?sign=1738952284-YaWhVwSdJc70RhNgToNrsqncEqJvKSK8-0-4c6fa48bc6601822f01302c275a99fe2)
例2 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035007.jpg?sign=1738952284-i4Xr4xFPwiTRQLmqzCmRK8Row8yoDOhE-0-d29dda04b5e1528fbb05262c9d7efe95)
例3 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035009.jpg?sign=1738952284-v4FkkXdsVw5jRHUCEGFGWHyzzvd3CUtr-0-ba58f4d0d61055cb947b45212b8f0c8d)
例4 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035011.jpg?sign=1738952284-yPxg6S69AQl0LHnpiq8lHAnFeptkuTvN-0-44623ee523d723ea803554995519c80f)
例5 证明
证明 令arcsinx=t,则x=sint,当x→0时,t→0,则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035013.jpg?sign=1738952284-LUUT88ISb7XKz9a3Bygf9WbfjmwdCxVP-0-9bdf597fc2b87ca49a696b2537474bdd)
发现:(1) ;(2)
;(3)
;(4)sinkx≠ksinx.