![线性代数与几何(独立院校用)](https://wfqqreader-1252317822.image.myqcloud.com/cover/243/26179243/b_26179243.jpg)
上QQ阅读APP看书,第一时间看更新
1.1.2 三阶行列式
利用消元法解三元线性方程组
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00010006.jpg?sign=1738881237-VrbROc0EYHCbdpgO8rMqlYlsBOHxSLyS-0-226543097aba89945592cdeac1df56cd)
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00010007.jpg?sign=1738881237-xg20ALk9PkcoNBL7XHILyu4PMITsgFmu-0-1f301829c60f35fc57754ce34fa45442)
(x2,x3的表达式略)
将代数式a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31用符号表示为
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00010008.jpg?sign=1738881237-vt5hgMIbdXopwELOkop2nDlJoNoL4tWl-0-672fc880c89ca018d1512f74e1035717)
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011001.jpg?sign=1738881237-1KbTn4KYzABoAayVCX8TtQyElb3jyO6a-0-cd9f53099da5df6296c6da4bf6fa22c0)
当三阶行列式
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011002.jpg?sign=1738881237-FNizhxQQL4GXy5JLxOqis6WmmboGJ2Yi-0-04b7969615d72258d254552385333643)
时,与二元线性方程组类似,上述三元线性方程组有唯一解,解为
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011003.jpg?sign=1738881237-o4fSLbQ8urUJoWXPVkqilHQZk5jA55UG-0-4143adff68768b20f38cc1ec9537b7e1)
其中
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011004.jpg?sign=1738881237-DJXsof8w6BShgCyVBuuJqev5SCtnbFHk-0-1f612bd3ecd5edfb7d46cd2f2b669796)
注 (1)三阶行列式的计算方法:
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011005.jpg?sign=1738881237-OJSyGBhJQRiPwTKF6xy8LiYCrBKpxVyv-0-f850d4a4d14f6632024a6e6515c4c161)
三阶行列式是六项的代数和,沿主对角线方向(实线)三个元素相乘取正号,沿次对角线方向(虚线)三个元素相乘取负号,这种方法也称作对角线法则,如图1.1所示.
(2)二、三阶行列式的对角线法则并不能推广到更高阶行列式.
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011006.jpg?sign=1738881237-B6VH8nj9JaF6jHeaDHkTaC2KJjjpFzqa-0-c5c6e00f4aa3b23804d8740d4c828e85)
图 1.1
例1 用对角线法则计算行列式
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011007.jpg?sign=1738881237-dk9rCmCjMr2R90hMaHgmeQdzzjyq3NPk-0-07dcb5caed67fab65f8f9f167b26473e)
解 D=2×3×6+(-5)×(-3)×4+0×1×(-1)-0×3×4-(-5)×1×6-2×(-3)×(-1)=120.
例2 用对角线法则计算行列式
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011008.jpg?sign=1738881237-CDIMsgLTl7t9pQ7S13kvlr6SwJMITzdx-0-d7447ce4f1bcece16158aefab4a04376)
解 D=bc2+ca2+ab2-ac2-ba2-cb2
=(a-b)(b-c)(c-a).
例3 解线性方程组
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00012001.jpg?sign=1738881237-WjbBToES76zsMUlezenQzE9nUHGYe9C6-0-4ae3ec256474ab0b305ec18d6cf00f8d)
解 系数行列式
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00012002.jpg?sign=1738881237-6MRIVqjT4VQgv6RLWoG7vO3rpveCjhvg-0-1e07119a136a3174c0302b5d8f840345)
因此有解,再计算D1,D2,D3:
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00012003.jpg?sign=1738881237-8fQf7Z3vo4L4iN86JNCWUkRI6FunBeYp-0-d15640f8b990e398596c76db2a62a80a)
代入公式得
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00012004.jpg?sign=1738881237-jTjOtLnVm2BxJ6tPpd9iUnuZUQyqy1CI-0-4b65dbdd40e2542249af89c8bbf1c782)
在这一章我们要把这个结果推广到n个方程的n个未知数的线性方程组
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00012005.jpg?sign=1738881237-LshODPOryia6EPm601onk3Rw90yndnhJ-0-9e8e46e8b091d07fcadd224ec1cf4f2b)
的情形.这种解线性方程组的方法将在1.6节中提到.为此,首先给出n阶行列式的定义并讨论它的性质,进而计算n阶行列式.