![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
习题1
1.求下列函数的定义域:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00062002.jpg?sign=1739380788-rsXsyXB5DjuC1DnzBB50PcFxWsDwYjH6-0-95987fd5a645d06da6056bfb0b8d3cc7)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063001.jpg?sign=1739380788-MWGkkWSCK5r0U84xo1UwJ6tlVc5mNV3n-0-a7cf51fbfc51cc14ccf98086c6cc2827)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063002.jpg?sign=1739380788-Um5Fw3J1wtxNsu4XLvx5LlS7IGsrYeYn-0-008d3dbe159243c5e7a0fd183cc78605)
2.判断下列每对函数是否是相同的函数,并说明原因.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063003.jpg?sign=1739380788-iDjItwoSYqHh07INyn33nuQ5H4YyQCzy-0-4121e3123c1ba70ece334a4ca2600387)
(3)y=2lgx与y=lgx2; (4)y=sin2x+cos2x与y=1;
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063004.jpg?sign=1739380788-8Rc75hU20MhXUhq46Z0TgNwdEjRgAxCq-0-80d136bf01db1a2175b8bcbbf6038a66)
3.指出下列函数的复合过程:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063005.jpg?sign=1739380788-7xp1jEqQCHvdZ6SfmJs8NBX6AMqQNMIy-0-1e45ad825dfd46d759d6dc536dcba7c1)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063006.jpg?sign=1739380788-M1DDzflJdnlRhStFFa47BUXkHDZcf686-0-20dd608e3d29166d796a306dc0023988)
(5)y=xsinxlnx; (6)y=lnsin2x.
4.判断下列数列的敛散性,若收敛,求其极限.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063009.jpg?sign=1739380788-N5QIxdHNW2GigwwIxpPfgLpZ0ULLEUdA-0-9eecdadb638c28eb4d92aac0e7e34fff)
5.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063007.jpg?sign=1739380788-8px3WU6tQYqApS3P0y5Rc6VX3XRp7hQa-0-d5cec5d22fde81626e3e29ccb1a056be)
6.已知,求常数a,b.
7.设
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064001.jpg?sign=1739380788-ja8HtZHCZFjDc6KP2BcsIuoeuKZENMRA-0-c59d2db62b70ab59d9744f3bdcff9cbb)
求:(1) ;
(2)f(g(x)),.
8.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064004.jpg?sign=1739380788-9LlMElfCnKdK2W2DasvHEJNBa8sFFEEw-0-af8f3d15c18a99653ce90dd0008c7de7)
9.设a1=10,,试证数列{an}极限存在,并求此极限.
10.证明
11.设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064007.jpg?sign=1739380788-MowuKzpshWNXgKzojfqqUBezeCj1nyTi-0-470ba9b4e8e28626eeca41889d5ee7f1)
讨论函数f(x)在点x=0处极限是否存在.
12.证明无穷小的等价关系具有下列性质:
(1)α~α(自反性);
(2)若α~β,则β~α(对称性);
(3)若α~β,β~γ,则α~γ(传递性).
13.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064008.jpg?sign=1739380788-tWLEhCeG1ufR8Gd7NKYlhf9qekKNTCun-0-469d1b35186b5afc1114c2231da64c4a)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065001.jpg?sign=1739380788-xy2WcsLhCZLhHr4MaODbYnJ5ETNVlJUj-0-5028f4668e707d7ac5fd1fdba9e64d75)
14.当x→0时,(tanx-sinx)与xk是同阶无穷小,求k值.
15.求函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065002.jpg?sign=1739380788-yp2scqwGdBLJdNLVpdk1LtjJCYULeuX8-0-1444271e8151ed55cb9a6b918570b418)
在分段点处的极限.
16.求
17.确定常数a,b,使.
18.已知为有限数l,求常数a,l.
19.已知
20.设.
21.已知,求常数a.
22.求下列函数的间断点,并判断其类型:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065009.jpg?sign=1739380788-LmYKsBa3k6ID7OfiOZiMc4ATFGCZk2TQ-0-c0697ad43688fdf4ff440c9d589b5c04)
23.设函数,求函数f(x)的间断点,并指出类型.
24.讨论函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00066002.jpg?sign=1739380788-z5WFHPwCI2cDFdSOSPYCC4rj3cPzHCPc-0-3e1209d8833864fdfec55afd637a4737)
在点x=0处的连续性.
25.设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00066003.jpg?sign=1739380788-cGvV1p9nMfOLdHurM8RABJ3zkcXyedJc-0-da9d4ef8b09498259bfc3f9f50f2bd9b)
确定常数a,b,使得f(x)在点x=0处连续.
26.(1)设,证明
,并问其逆是否成立?
(2)设f(x)在点x0连续,证明|f(x)|在点x0连续,并问其逆是否成立?
27.求函数,并确定常数a,b使函数f(x)在点x=-1,与x=1处连续.
28.证明方程x·2x=1至少有一个小于1的正根.
29.设函数f(x)在[a,b]上连续,且f(a)>a,f(b)<b,试证在(a,b)内至少存在一点ξ,使得f(ξ)=ξ.
30.设函数f(x)在[a,b]上连续,且a<c<d<b,证明:
(1)存在一个ξ∈(a,b),使得f(c)+f(d)=2f(ξ);
(2)存在一个ξ∈(a,b),使得mf(c)+nf(d)=(m+n)f(ξ).
31.求证:方程ex+e-x=4+cosx在(-∞,+∞)内恰有两个根.