![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
1.6.2 两个重要极限
1.
证 首先注意到,函数一切x≠0都有意义,并且当x改变符号时,函数值的符号不变,即
是一个偶函数,所以只需对x从右侧趋于零时来论证,即只需证明
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042001.jpg?sign=1738990103-NEfacJfihYPEfvST8jdRgnPMFgoL2PrU-0-c6674444973bd50bfb5465f00669ce0e)
作单位圆,设圆心角∠BOC=x,过点B的切线与OC的延长线相交于D,又CA⊥OB,由图1-15知
sinx=AC,x=,tanx=BD.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042004.jpg?sign=1738990103-WoP9cQ9NMJ3fT8YHJcFVwQwOTy3H1ZvV-0-e7fc4c0a4d740fc48a4b7c9dabac6d1d)
图1-15
而
△OBC的面积<扇形BOC的面积<△OBD的面积,
故
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042005.jpg?sign=1738990103-oCLUiaA7xIjGPMjXRacqtOqZNfeDj5dl-0-87b63750876c59fa2a587b3156b141d9)
即
sinx<x<tanx.
不等号各边都除以sinx(sinx>0),得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042006.jpg?sign=1738990103-DKompBWXDoFd98gKKeLJhqJYVGbwwsRA-0-3dce2eb54ce02f15909f157179c9d936)
从而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042007.jpg?sign=1738990103-aceLgvXxLEnZd3V96Cl926kbMhpL8TRu-0-3d4e2785a007c6d6461fb12253d0aea8)
这里利用 .
由 ,根据夹逼准则2可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042010.jpg?sign=1738990103-hPnmFr4nzFLSIlChsBTOQcS2UjCCMiV7-0-2f2c1a510aaad654971f4eba7492c5af)
综上所述, .
例3 求
解 .
例4 求.
解 令u=3x,则当x→0时,u→0,所以
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043001.jpg?sign=1738990103-quYoajB8rujjC3JoZMAWODlPYbyg3NW0-0-4b1810a2e6237a3bf352c8fe7c79b683)
注 如果正弦、正切符号后面的变量与分母的变量相同,且都趋于零,则有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043002.jpg?sign=1738990103-dRwzNQ0BfCYWIwsznuSsl3fWvm2ZuZe6-0-d2d0bca255294807b7191abd5bc6edb8)
例5 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043004.jpg?sign=1738990103-isCsjYb9XpgihBXEUny48tdlvJygakzj-0-ba344a93ef9bf120a9bc81e59ea35a04)
例6 求
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043006.jpg?sign=1738990103-fUnv4F2a8jePwEFIwnRbKqcYUWmS0krz-0-f1d65489579eae3b3c98b3ecdb1688f5)
例7 求.
解 令u=arcsinx,则x=sinu,当x→0时,u→0,所以
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043008.jpg?sign=1738990103-rJ9R5d7jy1eJ3v2yvG8cVoblzpQwgVMZ-0-8766a2fff8fb3648e260d909893dda92)
2.
证 第一步:考虑x取正整数n,即x趋于+∞的情形来证明.
设,证明{an}是单调递增并且有界的数列.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043011.jpg?sign=1738990103-OLItukgHPDbZsV91tUXBPtWdG7nUxe3i-0-01d2a3942d76052d3ed9946c266c5221)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044001.jpg?sign=1738990103-FIwxVWIZmH6fMWLmofK9lswzC1rrkrFy-0-64634c095e4c75dfb4e2aed0eca278da)
由an表达式可知,
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044002.jpg?sign=1738990103-YgN71Lzz12lcvTdBrHj5vwxEtZvpaHip-0-75b3b2043ea898d83c2651295b864bf9)
比较an与an+1的展开式,可以看到除前两项外,an的每一项都小于an+1的对应项,并且an+1还多了最后一个非零项,因此an<an+1,即{an}是单调递增数列.
又因为都小于1,所以
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044004.jpg?sign=1738990103-8j1kWVPCV7fmX0F9kcOYrKW3Zdt8Ouk1-0-309a0a56970c7221ba2ba5586ffdc51e)
即数列{an}是单调递增有界数列,根据极限存在准则2,数列{an}的极限存在,将此极限记为e,即 .
第二步:首先考虑当x→+∞时的情形,即证明
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044006.jpg?sign=1738990103-IdblKAsYKS0hmE4XOxXf8MFVAtclLXUm-0-45d6c858e91826cec4cbc682699a2063)
设{xn}是趋于+∞的任一单调递增正实数数列,则必存在正整数数列{bn},使得
bn≤xn<bn+1.
由此可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044007.jpg?sign=1738990103-4et4Lx1Yo9WLNPDf0Vh9p66X2r8kuSbi-0-3b5a71312489862dc7d626b7af54ddb9)
又因为
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045001.jpg?sign=1738990103-GnQ6lONyJ4xNXlYFJNl94tVsA3rWa0H3-0-cf1d3c0d2e5ab2bca3f06211001fd59a)
由夹逼准则知
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045002.jpg?sign=1738990103-gj0622zc5aRnUjqtIZTxHKtx73xw2tuV-0-ca18ad87b887b1506798ad394f57b59d)
由实数列{xn}的任意性知
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045003.jpg?sign=1738990103-XKEK2tzD8aQBuEZ9VQjWWGsZDsacqfF4-0-3d7e9462c905ae1cbed7436ff6cf7206)
对于x→-∞时的情形,采用类似x→+∞时的推导过程,只需令xn=-yn即可,这里不再赘述.
综上所述 .
注 这个极限也可换成另一种形式.
令,当x→∞时,u→0,于是有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045006.jpg?sign=1738990103-fJmeEfYuqvH793VOU8URaWF2tFOsgx07-0-fc08c37b419100a0b6fd87f20dc659ce)
例8 求
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045008.jpg?sign=1738990103-d90XLsbeoexec9XYa6A694asYsufRqLa-0-e2b6d98e320b88537275633a62550bd6)
例9 求
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045010.jpg?sign=1738990103-EFzIKObhhDkQ5d0APhGbAiBRZNNMJTbY-0-6796e34504b23e8e0a248b3ed153df3c)
例10 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046002.jpg?sign=1738990103-MlmCxISkveanZIMFNmTKVdVJBHp7cz9W-0-4e03fc9e54655decd02d30068528adc4)
则
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046003.jpg?sign=1738990103-3yzEpZAiUeH0gmjgZ3MkprL0606AWjbl-0-7094a8c52188994b509ef4849a1ce06e)
例11 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046005.jpg?sign=1738990103-wihncq4VMlf9RLIqsWrISrFMBMYQcxE4-0-4c32427e8970a5d1205dc4ec642623d2)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046006.jpg?sign=1738990103-2XkvqxhKeHlTzxid8DpLeOdXldjwkC4r-0-18996575e7832c89d7647dcb37a9784a)
例12 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046008.jpg?sign=1738990103-0gqNFlnWxjo9GN8Piy9lEX4Y3ANQ482g-0-7931f50746b46ae630091fcb1bf2902f)
例13 求.
解 令u=ex-1,即x=ln(1+u),则当x→0时,u→0,于是
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00047002.jpg?sign=1738990103-8mboeNoRBVUZUEIzgj2DwFGNxoeUd6dj-0-dc62a5e49f8e70d5636ab6edde56d33a)
利用例10的结果,可知上述极限为1,即
例14 求.
解 而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00047006.jpg?sign=1738990103-QEHZTsIvkPRYGhVm7CjF59OP2Wfi68fU-0-44d43038af65d08cd095a276f6c4f6c7)
由幂指函数极限的求法,得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00047007.jpg?sign=1738990103-lpsGBHxFDgU7FDZscWXkoVQsyNzkW8Yo-0-fa9b9764b9489ed2486c1980f5eab827)