
会员
人工智能数学基础
廖盛斌编著更新时间:2023-11-20 19:26:46
最新章节:本章参考文献开会员,本书免费读 >
本书分为7章,其内容包括代数学和分析学的基础概念、微积分的基础概念、矩阵与线性变换、矩阵分解、最优化理论与算法、概率模型和信息论的基础概念。本书强调数学概念并采用图形化的方式对其进行解释,以利于读者理解,同时,本书给出了数学知识在机器学习和人工智能领域的具体应用,将数学知识和工程实践有机结合,以使读者能对数学知识有更深层次的理解。
上架时间:2023-09-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
廖盛斌编著
主页
同类热门书
最新上架
- 会员
成为GPT高手
优化提示词是用好GPT的关键。本书基于GPT,讨论提示词的使用技巧和优化方法。本书不仅讨论如何让GPT不再“胡说八道”,如何用GPT解决各种问题,如何让GPT了解用户的需求,如何让GPT记忆力超群,还讲述如何应用GPT,如何让GPT自动运行,如何打造商业级别的GPT,如何辨别GPT生成的内容。无论你是职场人士,还是在校大学生,通过阅读本书,都可以掌握用好GPT的关键,提升自己的工作或学习效率。计算机8.5万字 - 会员
深入浅出人工智能:原理、技术与应用
本书旨在帮助读者从零开始学习人工智能,掌握人工智能的原理、技术和应用。本书共10章,首先是人工智能概述,接着深入浅出地讲解人工智能的原理和技术,包括数据预处理、数据可视化、机器学习基础、监督学习模型、无监督学习算法、神经网络基础、训练深度神经网络等内容,最后讲解人工智能的应用,包括智能对话和知识图谱。本书适合想要学习并掌握人工智能技术和应用的零基础读者阅读,还可以作为高等院校人工智能相关课程的教材计算机11.3万字 - 会员
DeepSeek实操:职场效率倍增的秘籍
本书是一本专为企业管理者和办公人员打造的实用指南,旨在帮助企业通过人工智能技术实现数字化转型,提升运营效率与竞争力。结合丰富的企业AI解决方案设计与实施经验,深入剖析了DeepSeek这一领先的人工智能模型在企业中的广泛应用场景。全书共分为四大部分,涵盖了企业管理、市场营销、销售与客服等多个核心领域,详细介绍了近100个企业使用场景,展示了如何通过DeepSeek实现效率的百倍提升。无论是人力资源计算机8.7万字 - 会员
揭秘大模型:从原理到实战
本书从技术角度深度解析大模型的原理,从大模型的基础概念及领域发展现状入手,概述大模型的理论基础,介绍OpenAIGPT、清华大学GLM、MetaLlama等主流大模型的技术原理,并从大模型参数高效微调、大模型指令微调、大模型训练优化和大模型推理优化等多角度解析大模型背后的技术,带领读者全方位掌握大模型的原理和实践方法。本书最后介绍私有大模型的构建,手把手指导读者做技术选型并搭建自己的私有大模型计算机12.2万字 智能涌现:AI时代的思考与探索
当前世界正处于百年变局,人类社会已经进入数字经济3.0时代:数字内容迭代,从1.0时代逐步迈入3.0时代;人工智能技术飞跃,从符号推理、深度学习走向知识+数据驱动的3.0时代;产业拓展更深更广,走向智能+3.0时代。随着大模型、ChatGPT、DeepSeek等智能涌现,我们该如何触发AI时代其他的突破性技术涌现?这些技术又该怎样反哺产业升级?本书阐述了人工智能技术演变的大趋势、算力驱动计算体系的计算机13.1万字- 会员
预训练语言模型:方法、实践与应用
近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字 - 会员
用ChatGPT轻松玩转机器学习与深度学习
本书共14章,主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。计算机18万字 人工智能与计算生物的未来
这是一本探讨人工智能与生物技术的融合颠覆传统医疗,并会对未来药物研发产生重大影响的书。作者凭借其在生物科学方面的专业背景,以及在生物技术和制药行业的从业经验,为读者呈现了对于医疗科技这一前沿领域的深刻见解。书中首先概述了数据科学方法的兴起以及生物学领域的范式转变,这一转变催生了计算生物学的革命,即通过计算机模拟进行生物实验和药物研发。作者详细介绍了人工智能和深度学习领域的重大突破,并探讨了这些技术计算机18.6万字- 会员
图解大模型:生成式AI原理与实战
本书全程图解式讲解,通过大量全彩插图拆解概念,让读者真正告别学习大模型的枯燥和复杂。全书分为三部分,依次介绍语言模型的原理、应用及优化。第一部分理解语言模型(第1~3章),解析语言模型的核心概念,包括词元、嵌入向量及Transformer架构,帮助读者建立基础认知。第二部分使用预训练语言模型(第4~9章),介绍如何使用大模型进行文本分类、聚类、语义搜索、文本生成及多模态扩展,提升模型的应用能力。第计算机16.4万字
同类书籍最近更新