
会员
智能制造:AI落地制造业之道
更新时间:2022-04-14 15:51:58
最新章节:结束语开会员,本书免费读 >
本书从人工智能技术的演进和发展,人工智能技术体系,人工智能技术角度,阐述在机电产品、研发设计、经营管理、生产制造、客户服务、经营决策中的应用,制造业企业实施人工智能的策略等。为人工智能技术在制造业中的应用落地给出一些方向和建议。
品牌:机械工业出版社
上架时间:2022-03-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
同类热门书
最新上架
- 会员
AIGC+智慧教育:Web 3.0时代的教育变革与转型
随着Web3.0时代的来临,我国教育领域迎来了一场全面而深刻的变革——AIGC、ChatGPT、大数据、云计算、物联网、数字孪生、元宇宙等新兴技术与教育行业的融合程度日益加深,AI驱动的教育新形态、新模式、新产品不断涌现,数字化、网络化、智能化逐渐成为引领我国教育变革与转型的重要方向。本书立足于全球范围内智慧教育领域的实践经验与前沿趋势,全面阐述AIGC、ChatGPT、元宇宙、数字孪生等新兴技计算机13.8万字 心与芯:我们与机器人的无限未来
我们当下正在经历一场AI革命。现在有创纪录的310万个机器人在工厂工作,从事从组装电脑到包装货物以及监测空气质量等各种工作。数量庞大的智能机器以各种各样的方式影响着我们的生活,如提高外科医生的手术精确度,清洁我们的家等等,我们正处于机器智能带来的令人兴奋的可能性当中。下一个万亿规模的企业,也许正在AI机器人领域诞生。当下的机器人产业,远远超出常人的想象。你会看到全世界最先锋的机器人研究团队如何开发计算机13.5万字- 会员
AIGC提示工程师精进之道
本书是一本关于AIGC提示工程师的实用指南,讲解了成为优秀AIGC提示工程师所需的技术特长和知识、沟通和协作能力、持续学习和自我提升方法等。本书分为3篇,共13章。第1篇为AIGC提示工程师基础,内容包括AI崛起下的新职业──AIGC提示工程师、设计高效提示的基本原则、常用的提示方法以及提示工程实践中的常见问题等;第2篇为提示进阶技巧,内容包括优化提示的除错过程、解决复杂问题的高级提示技巧、提升提计算机12万字 - 会员
预训练语言模型:方法、实践与应用
近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字 - 会员
人工智能技术
本书介绍了人工智能概览、机器学习、深度学习、人工智能主流开发框架、华为全栈全场景AI战略—EI、HiAI、昇腾,以及人工智能综合实验等内容?这是一本华为ICT学院人工智能课程培训的教材。本书是作者和华为的工作人员共同完成的,其间参阅了国内外现有教材和相关文献后编写的?全书注重理论与实践的结合,注重算法与框架的实际应用与实现方法,注重创新思维的训练与培养?本书既可作为高等院校人工智能课程的培训教材,计算机13.6万字 - 会员
AI原生应用开发:提示工程原理与实战
本书结合AI原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战应用,涵盖提示工程概述、结构化提示设计、NLP任务提示、内容创作提示、生成可控性提示、提示安全设计、形式语言风格提示、推理提示和智能体提示等内容。本书的初衷不是告诉读者如何套用各种预设的提示模板,而是帮助读者深入理解和应用提示设计技巧,以找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。本书计算机18.2万字 - 会员
科学仪器设备配置学:人工智能时代的界面管理
本书共八章,从高校资源配置的教育、科研、社会、经济规律视角,以建设卓越世界一流大学为导向,对高校科学仪器设备配置中的问题进行研究。计算机17.5万字 - 会员
人工智能数学基础与Python机器学习实战
本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字